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The Kondo effect in periodic narrow-band systems
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Abstract. The Kondo divergences owing to interaction of current carriers with local moments in highly
correlated electron systems are considered within the Hubbard and s-d exchange models with infinitely
strong on-site interaction, the many-electron Hubbard representation being used. The picture of density of
states containing a peak at the Fermi level is obtained. Various forms of the self-consistent approximation
are used. The problem of the violation of analytical properties of the Green’s function is discussed. Smearing
of the “Kondo” peak owing to spin dynamics and finite temperatures is investigated.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.28.+d Narrow-band systems; intermediate-valence solids

The problem of strong correlations and magnetism in
many-electron systems is one of the most important in
the solid state theory. Since the Hubbard’s works of 60’s,
a great progress has been achieved in understanding elec-
tronic structure of systems with strong on-site interaction.
Last time, the role of the Kondo effect has been discussed
within the large-d approach (d is space dimensionality)
which reduces the initial periodic Hubbard model to an
effective Anderson impurity model [1,2]. Besides the Hub-
bard bands, an important role in the formation of density
of states (DOS) picture belongs to a peak at the Fermi
level, which was found for both half-filled and doped case
(the latter case is considered in [2, 3]). It should be noted
that this approach meets with a number of computa-
tional difficulties (e.g., consideration of finite temperatures
is needed, and the low-temperature limit is non-trivial).
The structure of the spectrum in large-d approaches is
confirmed by the Monte-Carlo calculations. On the other
hand, this feature was not reproduced by most preceding
analytical approaches. In particular, the Hubbard-III ap-
proximation [4] does not take into account contributions
of Fermi-like excitations in a proper way because of its
single-site character. A detailed analysis of this approxi-
mation was performed in references [5,6] within the large-z
(z is nearest-neighbor number) expansion.

In the present paper we present a treatment that is
based on the method of equations of motion for the many-
electron Hubbard operators [7, 8] and is much more sim-
ple than the large-d approach. As the zero order this ap-
proach reduces to the simplest Hubbard-I approximation.
General expressions for 1/z-corrections were obtained in
reference [5]. Unfortunately, the terms with the one-
particle occupation numbers (which just describe the
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Kondo effect) were neglected in references [5,6], and only
a classical approximation was considered in reference [6].

We start from the s-d exchange model with the large
s-d coupling parameter |I|,

H =
∑
kσ

tkc
†
kσckσ − I

∑
iσσ′

Siσσσ′c
†
iσciσ′ +Hd, (1)

where tk is the band energy, Hd is the Heisenberg Hamil-
tonian of the localized-spin system, σ are the Pauli ma-
trices. In the limit |I| → α∞ (here and hereafter α =
sign I = ±), it is convenient to pass to the atomic repre-
sentation of the Hubbard operators Xβγ

i = |iβ〉〈iγ| where
Hsd (the second term in (1)) takes the diagonal form [9].
For the electron concentration n < 1, after performing
the procedure of projection onto the corresponding state
space, the one-electron Fermi operators c†iσ are replaced
by the many-electron operators g†iσα. These are expressed
in terms of the X-operators as

g†iσ+ =
∑
M

{(S + σM + 1)/(2S + 1)}1/2Xi(M+
σ

2
,+;M),

g†iσ− =
∑
M

σ{(S − σM)/(2S + 1)}1/2Xi(M +
σ

2
,−;M),

where |M〉 are the empty states and |mα〉 are the singly-
occupied states with the total on-site spin S + α/2 and
its projection m (which survive at |I| → α∞), σ = ±.
The Hamiltonian of the s-d exchange interaction yields a
constant energy shift only and can be omitted, so that we
obtain

H =
∑
kσ

tkg
†
kσαgkσα +Hd, α = sign I. (2)

For n > 1 we have to pass to the “hole” representation
by introducing new localized spins S̃ = S ± 1/2, and
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the Hamiltonian takes the same form (2) with the replace-
ment tk → −tk(2S̃ + 1)/(2S + 1). For S = 1/2, I → −∞
the Hamiltonian (2) coincides with that of the Hubbard
model in the case of the infinite on-site repulsion U →∞
with the replacement tk → tk/2 and the almost half-filled
band, so that n→ δ with δ the hole concentration. Thus
we do not need to discuss the Hubbard model separately
(physically, both models describe the local-moment situa-
tion).

We calculate the one-particle Green’s function for fer-
romagnetic (FM) state in the energy representation,

Gkσα(E) = 〈〈gkσα|g†kσα〉〉E . (3)

Using the commutation relations for the operators giσα
and spin operators (cf. Refs. [5,6]) we obtain the equation
of motion

(E − tk−qσα)Gkσα(E) = Pσα

+
α

2S + 1

∑
q

tk−q{〈〈δ[σSztotq

−1
2

∑
M

Xq(Mα;Mα)]gk−qσα|g†kσα〉〉E

+〈〈S−σtotqgk−q,−σα|g†kσα〉〉E}, (4)

with S±tot, Sztot being the total spin operators (including
the contributions of empty and singly-occupied states, see
for details [6]),

tkσα = Pσαtk, Pσα =
S̃ + 1/2 + ασ〈Sztot〉 − αn/2

2S + 1
,

〈Sztot〉 is the total on-site average magnetization. The
“Kondo” term comes from the last Green’s function in the
right-hand side of (4), which describes spin-flip processes.
Performing decoupling of the next equation of motion to
first order in the nearest-neighbor number 1/z we derive

(E − tk−qσα)〈〈S−σtotqgk−q,−σα|g†kσα〉〉E =
α

2S + 1
[χqσ + (2S + 1)nk−q−σα](1 + tkGkσα(E))

− αnk−q−σαtk−qGkσα(E). (5)

Here we have neglected Hd,

χqσ = 〈Sσtot−qS
−σ
totq〉, nkσα = 〈g†kσαgkσα〉.

To lowest order (i.e. in the Hubbard-I approximation) we
have

nkσα = Pσαf(tkσα)

where f(E) is the Fermi function. After substituting (5)
and a similar equation for the longitudinal contribution
(which contains χzzq = 〈Sztot−qS

z
totq〉) into (4) we obtain

Gkσα(E) =
akσα(E)

bkσα(E)− akσα(E)tk
, (6)

where

akσα(E) = Pσα +
∑
q

tk−q

(2S + 1)2

×
[
χqσ + (2S + 1)nk−q−σα

E − tk−q−σα
+

χzzq
E − tk−qσα

]
, (7)

bkσα(E) = E −
∑
q

t2k−q

2S + 1
nk−q−σα

E − tk−q−σα
· (8)

The longitudinal fluctuations can be neglected in the sat-
urated FM region [10], but are important in the paramag-
netic region (the corresponding results are obtained from
the above formulas at 〈Sztot〉 = 0) which is considered here-
after. The equation for the chemical potential reads∑

k

〈g†kσαgkσα〉 =
n

2
·

To smear the logarithmic DOS singularity at the Fermi
level, one has to take into account spin dynamics which is
determined by the Hamiltonian Hd (cf. [11]). To this end,
we introduce the normalized spectral spin function

Kq(ω) = − 1
π
NB(ω)

Im〈〈Szq|Sz−q〉〉ω
〈Sz−qS

z
q〉

where NB(ω) is the Bose function. In the far paramagnetic
region (where spin correlations can be neglected) we can
use the simplest spin-diffusion approximation with

Kq(ω) =
1
π

Dq2

ω2 + (Dq2)2
(9)

where D is the spin diffusion constant (in fact, the results
depend weakly on the concrete form of spin dynamics).
Then we have to put in (6)

akα(E) = Pα +
∑
q

∫
dωKq(ω)

tk−q

(2S + 1)2

×χ+ (2S + 1)nk−qα

E − Pαtk−q − ω
, (10)

bkα(E) = E −
∑
q

∫
dωKq(ω)

t2k−q

2S + 1

× nk−qα

E − Pαtk−q − ω
· (11)

To simplify numerical calculations, we average the spectral
function (9) in q,

Kq(ω)→ K(ω) =
∑
q

Kq(ω),

which is sufficient to obtain qualitatively valid results. In-
deed, this approximation (which is in spirit of the large-
d or large-z expansion) reproduces correctly the low-
frequency behavior of spin fluctuations which is important
near the Fermi level. Then a(E) and b(E) do not depend
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Fig. 1. The density of states picture for the Green’s function (6) and semielliptic bare DOS with S = 1/2, n = 0.15 in the
absence of spin dynamics for different temperatures (Eqs. (7, 8), lines 1, 2, 3 correspond to T = 0, 0.01, 0.03) and with account
of spin dynamics at zero temperature (Eqs. (10, 11), line 4); (a) α = + and (b) α = −. Inset shows the region near the Fermi
energy which corresponds to the peak top. Energy and temperature is measured in units of bare half-bandwidth.

on k. We have taken below D = 0.7c|t| (t is the transfer
integral). In the far paramagnetic region we have

〈(Sztot)
2〉 =

1
3
〈S2

tot〉 =
1
3
χ =

1− n
2S + 1

(
2
3
S3 + S2 +

1
3
S

)
+

n

2S̃ + 1

(
2
3
S̃3 + S̃2 +

1
3
S̃

)
.

Then we obtain for S = 1/2

χ =

{
3(1− n)/4 + 2n, α = +,
3(1− n)/4, α = −.

The results of numerical calculation of the single-
particle density of states

Nα(E) = − 1
π

Im
∑
k

Gkα(E) (12)

for the semielliptic bare DOS are shown in Figure 1. One
can see that pronounced density of states peaks occur at
the Fermi level. The peaks are smeared by both includ-
ing spin dynamics and finite temperatures. It should be
noted that, unlike the large-d approach [2], the limit of
zero temperature makes no difficulties.
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Fig. 2. The density of states picture in the self-consistent approximation (14) with S = 1/2, n = 0.05. The notations are the
same as in Figure 1.

As well as for small-I Kondo problem, the “Kondo ef-
fect” is connected with the Fermi functions (which were
not treated in Ref. [5]) and is a quantum effect that is
small in 1/S. Unlike the FM case, where the singular-
ity has one-sided form and non-quasiparticle (incoherent)
contributions to the density of state plays main role [10],
the logarithmic contribution is symmetric with respect to
the Fermi level. Note that after formal expansion in 1/z
the contributions to the Green’s function with the Fermi
functions are canceled in the paramagnetic phase to first
order [12].

As discussed in reference [5], the approximation (7, 8)
leads to some formal difficulties connected with occur-
rence of an additional singularity of the Green’s function

in the complex plane. This can result in the violation of
analytical properties, in particular, of the normalization
condition

L = 〈{giσα, g†iσα}〉 = Pα (13)

where

L ≡
+∞∫
−∞

dENα(E).

The analytical properties turn out to be different for the
cases of positive and negative I. For I > 0 the singularity
lies in the upper half-plane, and for I < 0 in the lower
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Fig. 3. The density of states picture in the self-consistent approximation (15) for S = 1/2, n = 0.05.

one, so that the normalization condition is violated for
I < 0, although this violation is numerically not too large
(see Tab. 1). This difficulty does not seem to lead to un-
physical conclusions in our simple approximation, since
the results for the DOS picture in both the cases are qual-
itatively similar. However, it should be stressed that this
problem has a rather general character and is typical for
most calculations which use the many-electron Hubbard
representation (or related slave-boson and slave-fermion
representations which include constraint conditions). It is
connected with the k-dependence of “perturbation” (band
energy tk), which changes its sign in the band, and a
complicated structure of the Green’s function (the simple
Dyson equation is not valid). By these reasons, the signs
of the corresponding imaginary parts are not fixed; the

problems increase when using self-consistent procedures.
In particular, such a difficulty should occur in the non-
crossing approximation (NCA) for the Anderson model
where an expansion in the hybridization Vk is constructed.
Unfortunately, this problem is usually misregarded since
the normalization condition is practically never verified.

The approximation (6, 7, 8) has an unpleasant phys-
ical drawback: DOS has the “Van Hove” singularities at
the energies, corresponding to the edges of the Hubbard-I
band [5]. To remove this drawback, we renormalize self-
consistently the bandwidths in the resolvents (i.e., in the
denominators in (10, 11)) and in the Fermi functions by
replacing

E − Pαtk−q → E − P̃αtk−q. (14)
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Table 1. Values of the normalization factors L/Pα (see
Eq. (13)) for semielliptic bare DOS in (I) the approxima-
tion (7, 8); (II) the self-consistent approximation (14); (III)
the self-consistent approximation (15).

α n L/Pα

I II III

+ 0.20 1.000 1.000 1.022

+ 0.15 1.000 1.000 1.017

+ 0.10 1.000 1.000 1.011

+ 0.05 1.000 1.000 1.004

+ 0.02 1.000 1.000 1.002

+ 0.00 1.000 1.000 1.001

− 0.00 1.510 1.395 1.325

− 0.02 1.489 1.366 1.328

− 0.05 1.448 1.337 1.318

− 0.10 1.385 1.331 1.277

− 0.15 1.342 1.246 1.227

− 0.20 1.289 1.192 1.177

Due to this self-consistency procedure, the band edges in
the resolvents coincide with those for the total Green’s
function (6). The corresponding numerical results are
shown in Figure 2. The analytical properties for I > 0
are not violated (Tab. 1). This approximation is in spirit
of large-N expansion and retains the quasiparticle pic-
ture, unlike the Hubbard-III approximation and the self-
consistent approximation considered below which yield a
strongly incoherent behavior.

Finally, we discuss also the “true” self-consistent ap-
proximation where the exact Green’s functions are in-
cluded into resolvents. Then we have to replace in the
denominators of (10, 11)

E − Pαtk−q → bk−qα(E)− ak−qα(E)tk−q (15)

and to make the corresponding renormalization of the dis-
tribution functions

nkα = − 1
π

∫
dEf(E) ImGkα(E).

One can see that the DOS picture (Fig. 3) becomes
somewhat smeared even in the absence of spin dynamics,
but the smearing is not so strong as in the FM case [10].

In this self-consistent approximation, the analytical prop-
erties are violated for both I > 0 and I < 0 (Tab. 1).

To conclude, we have analyzed formation of the
“Kondo” peak in narrow-band systems at the Fermi level
within a simple analytical approach. The numerical re-
sults demonstrate sharp energy dependence of the den-
sity of states near EF. As well as in the standard Kondo
problem, one can expect strong temperature dependences
of thermodynamic and transport properties (e.g., an en-
hancement of the effective electron mass). This problem
needs further investigations. In particular, summation of
higher-order perturbation corrections with the use of slave
boson and fermion representations would be of interest.
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